Then \( \overrightarrow{PQ} = r(t + h) - r(t) \).
It follows that \( \frac{1}{h} (\overrightarrow{PQ}) \) is a vector parallel to \( \overrightarrow{PQ} \).
As \( h \rightarrow 0 \), the point \( Q \) approaches \( P \) along the curve.
The derivative of \( r \) with respect to \( t \) is denoted by \( \dot{r} \) and is defined by
\[ \dot{r}(t) = \lim_{{h \to 0}} \frac{r(t + h) - r(t)}{h} \]provided that this limit exists.
The vector \( \dot{r}(t) \) points along the tangent to the curve at \( P \), in the direction of increasing \( t \).
Note: The derivative of a vector function \( r(t) \) is also denoted by \( \frac{dr}{dt} \) or \( r'(t) \).
Let \( \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} \). If both \( x(t) \) and \( y(t) \) are differentiable, then
\( \mathbf{r}'(t) = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} \)
Proof: By the definition, we have
\( \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t + h) - \mathbf{r}(t)}{h} \)
\( = \lim_{h \to 0} \frac{(x(t + h)\mathbf{i} + y(t + h)\mathbf{j}) - (x(t)\mathbf{i} + y(t)\mathbf{j})}{h} \)
\( = \lim_{h \to 0} \frac{x(t + h)\mathbf{i} - x(t)\mathbf{i}}{h} + \lim_{h \to 0} \frac{y(t + h)\mathbf{j} - y(t)\mathbf{j}}{h} \)
\( = \left( \lim_{h \to 0} \frac{x(t + h) - x(t)}{h} \right) \mathbf{i} + \left( \lim_{h \to 0} \frac{y(t + h) - y(t)}{h} \right) \mathbf{j} \)
\( \mathbf{r}'(t) = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} \)
Hence, proved.
The second derivative of \( \mathbf{r}(t) \) is
\[ \mathbf{r}''(t) = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j} = x''(t)\mathbf{i} + y''(t)\mathbf{j} \]This can be extended to three-dimensional vector functions:
\[ \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} \] \[ \mathbf{r}'(t) = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \] \[ \mathbf{r}''(t) = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j} + \frac{d^2z}{dt^2}\mathbf{k} \]We have the following results for differentiating vector functions:
Consider \(\int r(t) \, dt = \int x(t) \, i + y(t) \, j + z(t) \, k \, dt\)
\(= \left[ \int x(t) \, dt \right] i + \left[ \int y(t) \, dt \right] j + \left[ \int z(t) \, dt \right] k\)
\(= X(t) \, i + Y(t) \, j + Z(t) \, k + c\)
where \(\frac{dX}{dt} = x(t)\), \(\frac{dY}{dt} = y(t)\), \(\frac{dZ}{dt} = z(t)\), and \(c\) is a constant vector. Note that \(\frac{dc}{dt} = 0\).