AOS5 Topic 4: Cross Product

Vector Product

Geometric Definition of the Vector Product

Definition of the vector product: The vector product of \( \mathbf{a} \) and \( \mathbf{b} \) is denoted by \( \mathbf{a} \times \mathbf{b} \).

The magnitude of \( \mathbf{a} \times \mathbf{b} \) is equal to \( |\mathbf{a}| |\mathbf{b}| \sin \theta \), where \( \theta \) is the angle between \( \mathbf{a} \) and \( \mathbf{b} \).

The direction of \( \mathbf{a} \times \mathbf{b} \) is perpendicular to the plane containing \( \mathbf{a} \) and \( \mathbf{b} \), in the sense of the right-hand rule.

Note: The vector product is often called the cross product.


Watch the video below to understand the notes about the cross product more deeply.



Created with GeoGebra®, by Dave Nero, Link

The Magnitude of \( \mathbf{a} \times \mathbf{b} \)

By definition, we have \( |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta \) where \( \theta \) is the angle between \( \mathbf{a} \) and \( \mathbf{b} \).

The direction of \( \mathbf{a} \times \mathbf{b} \) using the right-hand rule:

  1. Point your index finger along the vector \( \mathbf{a} \).
  2. Point your middle finger along the vector \( \mathbf{b} \).
  3. Keep your thumb at right angles to both \( \mathbf{a} \) and \( \mathbf{b} \). The direction of your thumb gives the direction of the vector \( \mathbf{a} \times \mathbf{b} \).


Calculating Cross Product 



Created with GeoGebra®, by Lenore Horner, Link


The direction of \( \mathbf{a} \times \mathbf{b} \) using the right-hand rule

To find the direction of the vector \( \mathbf{a} \times \mathbf{b} \) using your right hand:

  1. Point your index finger along the vector \( \mathbf{a} \).
  2. Point your middle finger along the vector \( \mathbf{b} \).
  3. Keep your thumb at right angles to both \( \mathbf{a} \) and \( \mathbf{b} \), as in the picture. The direction of your thumb gives the direction of the vector \( \mathbf{a} \times \mathbf{b} \).


The following two diagrams show \( \mathbf{a} \times \mathbf{b} \) and \( \mathbf{b} \times \mathbf{a} \).


The vector \( \mathbf{b} \times \mathbf{a} \) has the same magnitude as \( \mathbf{a} \times \mathbf{b} \), but the opposite direction. We can see that:

\( \mathbf{b} \times \mathbf{a} = -(\mathbf{a} \times \mathbf{b}) \)

Thus, the vector product is not commutative.

Note: The vector product is also not associative. In general, we have \( (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \).


Vector Product of Parallel Vectors

If \( \mathbf{a} \) and \( \mathbf{b} \) are parallel vectors, then \( \mathbf{a} \times \mathbf{b} = 0 \), since \( |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin 0^\circ = 0 \).

Conversely, if \( \mathbf{a} \) and \( \mathbf{b} \) are non-zero vectors such that \( \mathbf{a} \times \mathbf{b} = 0 \), then \( \mathbf{a} \) and \( \mathbf{b} \) are parallel.


Vector Product of Perpendicular Vectors

If \( \mathbf{a} \) and \( \mathbf{b} \) are perpendicular vectors, then

\[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin 90^\circ = |\mathbf{a}| |\mathbf{b}| \]

The three vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{a} \times \mathbf{b} \) form a right-handed system of mutually perpendicular vectors,as shown in the diagram.



Vector Product in Component Form

Using the previous observations about the vector product of parallel and perpendicular vectors:

\[ \mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0 \]

\[ \mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} \]

\[ \mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j} \]

The diagram on the right may help you to follow the pattern among these vector products.

The vector product distributes over addition. That is:

\[ \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} \]

These facts can be used to establish the following result.

Vector Product in Component Form

If \( \mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \) and \( \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} \), then

\[ \mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k} \]

Example 1

Find the vector product of \( \mathbf{a} = 3i + 3j + 8k \) and \( \mathbf{b} = i - 3j + 2k \),

and hence find a unit vector that is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \).

The vector product can be evaluated as follows:

\( \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 3 & 8 \\ 1 & -3 & 2 \end{vmatrix} \)
\(= \mathbf{i} \begin{vmatrix} 3 & 8 \\ -3 & 2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & 8 \\ 1 & 2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & 3 \\ 1 & -3 \end{vmatrix} \)
\(= \mathbf{i} \left(3 \times 2 - 8 \times (-3)\right) - \mathbf{j} \left(3 \times 2 - 8 \times 1\right) + \mathbf{k} \left(3 \times (-3) - 3 \times 1\right) \)
\(= 30\mathbf{i} + 2\mathbf{j} - 12\mathbf{k} \)

The magnitude of \( \mathbf{a} \times \mathbf{b} \) is \( \sqrt{30^2 + 2^2 + (-12)^2} = 2\sqrt{262} \).

Hence a unit vector perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \) is \( \frac{1}{{2\sqrt{262}}} (30i + 2j - 12k) \).

Example 2

Given that \( \mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a} \), with \( \mathbf{a} \neq \mathbf{0} \).

Proof:

By assumption, we have

\( \mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a} \)

\( \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{a} = 0 \)

\( \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = 0 \)

Therefore, \( \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = 0 \)

Since \( \mathbf{a} \neq \mathbf{0} \), it follows that either \( \mathbf{b} + \mathbf{c} = \mathbf{0} \) or the vectors \( \mathbf{a} \) and \( \mathbf{b} + \mathbf{c} \) are parallel.

Hence we must have \( \mathbf{b} = -\mathbf{c} \) or \( \mathbf{a} = k(\mathbf{b} + \mathbf{c}) \) for some \( k \in \mathbb{R} \).

Example 3

Find the angle between two vectors \( \mathbf{a} \) and \( \mathbf{b} \), where \( \mathbf{a} = \langle -4, 3, 0 \rangle \) and \( \mathbf{b} = \langle 2, 0, 0 \rangle \)

Solution:

We know that the formula to find the angle between two vectors is:

\[ \sin \theta = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \]

Therefore, \( \theta = \sin^{-1}\left( \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right) \)

Now, we have to find the cross product of two vectors \( \mathbf{a} \) and \( \mathbf{b} \):

\[ \mathbf{a} \times \mathbf{b} = \mathbf{i} \times (0) - \mathbf{j} \times (0) + \mathbf{k} \times (-6) = -6\mathbf{k} \]

While finding the angle between two vectors, substitute the magnitude of the vector value, thus:

\[ |\mathbf{a} \times \mathbf{b}| = 6 \]

Therefore, \( \theta = \sin^{-1}\left( \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|} \right) \)

\[ \theta = \sin^{-1}\left( \frac{6}{5 \cdot 2} \right) \]

\[ \theta = \sin^{-1}\left( \frac{3}{5} \right) = 36.87^\circ \]

Hence, the angle between two vectors, \( \mathbf{a} \) and \( \mathbf{b} \) (\( \theta \)), is \( 36.87^\circ \).

Example 4

Simplify

\( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} + \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) \)

To simplify \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} + \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) \), we'll use the property that \( \mathbf{a} \times \mathbf{b} \) is perpendicular to \( \mathbf{a} \).

Given that \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0 \) because \( \mathbf{a} \times \mathbf{b} \) is perpendicular to \( \mathbf{a} \), we have:

\( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} + \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = 0 + \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) \)

Since the dot product is commutative, \( \mathbf{b} \cdot (\mathbf{a} \times \mathbf{b}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} \), the expression simplifies to:

\( 0 + (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} \)

Example 5

Find a vector of magnitude 5 that is perpendicular to \( \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} \) and \( \mathbf{b} = \mathbf{i} - 2\mathbf{j} \).

Solution:

To find a vector of magnitude 5 that is perpendicular to \( \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} \) and \( \mathbf{b} = \mathbf{i} - 2\mathbf{j} \), we'll follow these steps:

  1. Calculate the vector product \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \).
  2. Normalize \( \mathbf{c} \) by dividing it by its magnitude.
  3. Scale \( \mathbf{c} \) to have a magnitude of 5.

1. Calculate the Vector Product \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \)

Given \( \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} \) and \( \mathbf{b} = \mathbf{i} - 2\mathbf{j} \), we compute:

\( \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -1 \\ 1 & -2 & 0 \end{vmatrix} \)

\( = (\mathbf{j} \cdot 0 - \mathbf{k} \cdot (-2), -(\mathbf{i} \cdot 0 - \mathbf{k} \cdot 1), \mathbf{i} \cdot (-2) - \mathbf{j} \cdot 1) \)

\( = (2, -1, -2) \)

2. Normalize \( \mathbf{c} \)

The magnitude of \( \mathbf{c} \) is \( |\mathbf{c}| = \sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3 \).

So, \( \mathbf{c} \) normalized is \( \frac{1}{3} (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) \).

3. Scale \( \mathbf{c} \) to Have a Magnitude of 5

To make the magnitude 5, we scale \( \mathbf{c} \) by \( \frac{5}{3} \).

Therefore, the vector of magnitude 5 that is perpendicular to \( \mathbf{a} \) and \( \mathbf{b} \) is \( \frac{5}{3}(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = \frac{10}{3}\mathbf{i} - \frac{5}{3}\mathbf{j} - \frac{10}{3}\mathbf{k} \).

Example 6

Show that the area of a triangle formed by the position vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) is given by \( \frac{1}{2} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} | \).

To show that the area of the triangle formed by the position vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) is given by \( \frac{1}{2} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} | \), we can use the properties of the cross product and the formula for the area of a triangle.

Let's denote the area of the triangle formed by \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) as \( A \).

The area of a triangle formed by vectors \( \mathbf{u} \) and \( \mathbf{v} \) is half the magnitude of their cross product, i.e., \( A = \frac{1}{2} | \mathbf{u} \times \mathbf{v} | \).

Therefore, the area of the triangle formed by \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) can be written as:

$$ A = \frac{1}{2} | \mathbf{a} \times \mathbf{b} | + \frac{1}{2} | \mathbf{b} \times \mathbf{c} | + \frac{1}{2} | \mathbf{c} \times \mathbf{a} | $$

Now, using the properties of the cross product:

$$ | \mathbf{a} \times \mathbf{b} | = | -\mathbf{b} \times \mathbf{a} | $$

$$ | \mathbf{b} \times \mathbf{c} | = | -\mathbf{c} \times \mathbf{b} | $$

$$ | \mathbf{c} \times \mathbf{a} | = | -\mathbf{a} \times \mathbf{c} | $$

We can rewrite the area \( A \) as:

$$ A = \frac{1}{2} (| \mathbf{a} \times \mathbf{b} | + | \mathbf{b} \times \mathbf{c} | + | \mathbf{c} \times \mathbf{a} |) + \frac{1}{2} (| -\mathbf{b} \times \mathbf{a} | + | -\mathbf{c} \times \mathbf{b} | + | -\mathbf{a} \times \mathbf{c} |) $$

$$ = \frac{1}{2} (| \mathbf{a} \times \mathbf{b} | + | \mathbf{b} \times \mathbf{c} | + | \mathbf{c} \times \mathbf{a} | + | \mathbf{b} \times \mathbf{a} | + | \mathbf{c} \times \mathbf{b} | + | \mathbf{a} \times \mathbf{c} |) $$

$$ = \frac{1}{2} (| \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} | + | \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} |) $$

$$ = \frac{1}{2} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} | $$

Since \( | \mathbf{b} \times \mathbf{a} | = | \mathbf{c} \times \mathbf{b} | = | \mathbf{a} \times \mathbf{c} | \), we can rewrite the equation as:

$$ A = \frac{1}{2} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} | $$

Therefore, the area of the triangle formed by the position vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) is given by \( \frac{1}{2} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} | \).

Example 7

A parallelogram \( OABC \) has one vertex at the origin \( O \) and two other vertices at the points \( A(0, 1, 3) \) and \( B(0, 2, 5) \). Find the area of \( OABC \).

Solution:

To find the area of the parallelogram \(OABC\), we first need to find the area of the triangle formed by the vectors \(\overrightarrow{OA}\) and \(\overrightarrow{OB}\). Let's calculate that first.

Given the vertices \(O(0,0,0)\), \(A(0,1,3)\), and \(B(0,2,5)\), we can calculate the vectors \(\overrightarrow{OA}\) and \(\overrightarrow{OB}\) as follows:

\[
\overrightarrow{OA} = \langle 0 - 0, 1 - 0, 3 - 0 \rangle = \langle 0, 1, 3 \rangle
\]
\[
\overrightarrow{OB} = \langle 0 - 0, 2 - 0, 5 - 0 \rangle = \langle 0, 2, 5 \rangle
\]

Now, let's find the cross product of these vectors to get the area of the triangle \(OAB\):

\[
\overrightarrow{OA} \times \overrightarrow{OB} = -\mathbf{i}
\]

The magnitude of \( \overrightarrow{OA} \times \overrightarrow{OB} \) is \( | \overrightarrow{OA} \times \overrightarrow{OB} | = 1 \). Therefore, the area of the triangle \( OAB \) is \( \frac{1}{2} \times 1 = \frac{1}{2} \).

Now, since the area of a parallelogram is twice the area of a triangle formed by its adjacent sides, the area of the parallelogram \( OABC \) is \( 2 \times \frac{1}{2} = 1 \).

So, the area of the parallelogram \( OABC \) is \( 1 \).

Exercise &&1&& (&&1&& Question)

find the vector product of \( \mathbf{a} = \mathbf{i} - 4\mathbf{j} + \mathbf{k} \) and \( \mathbf{b} = 4\mathbf{i} + 3\mathbf{j} \), and then find the magnitude of the resulting vector.

1
Submit

Exercise &&2&& (&&1&& Question)

Simplify : \( \mathbf{a} \times (\mathbf{a} - \mathbf{b}) \)

2
Submit

Exercise &&3&& (&&1&& Question)

Simplify :\( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} \)

3
Submit

Exercise &&4&& (&&1&& Question)

What is \( \mathbf{i} \times \mathbf{k} \)?

4
Submit

Exercise &&5&& (&&1&& Question)

Find the area of the triangle PQR with vertices \( P(1, 5, -2) \), \( Q(0, 0, 0) \), and \( R(3, 5, 2) \).

5
Submit